SYNFACTS
Highlights in Current Synthetic Organic Chemistry

This electronic reprint is provided for non-commercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author’s homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

Publishing House and Copyright:
© 2017 by
Georg Thieme Verlag KG
Rüdigerstraße 14
70469 Stuttgart
ISSN 1861-1958

Any further use only by permission of the Publishing House
Catalytic Enantioselective Vinlogous Pinacol Rearrangement

Significance: Zhu and co-workers report the first enantioselective vinlogous pinacol rearrangement of 1,4-diols using a chiral N-triflylphosphoramide catalyst. It is proposed that ion pairing between the intermediate allylic cation and the conjugated base of the chiral Brønsted acid is the key to achieving high selectivities. Synthetic applications of this method were demonstrated by a subsequent conversion of the resulting β,γ-unsaturated ketones into enantioenriched polysubstituted tetrahydrofuran and tetrahydronaphthalene derivatives.

Comment: The vinlogous pinacol rearrangement is a well-known reaction and has been applied in the synthesis of various natural products. Here, the authors report the first catalytic asymmetric variant of this transformation, achieved by using a chiral N-triflylphosphoramide catalyst and careful substrate design. However, the substrates are limited to those with diaryl substituents that can stabilize the intermediate allylic cation. This method would be even more useful if its substrate scope could be broadened.